
XYO Network: Network Implementation

Erik Saberski, Carter Harrison, Arie Trouw

August, 2018

The XY Oracle Network utilizes a novel blockchain protocol to provide a
trustless, cryptographic network of decentralized location data. The central
mechanisms of the protocol are known as Proof of Origin and Bound Witness,
which tie together blockchain technology and real-world data to make a system
that has many direct applications today.

The XY Oracle Network is composed of four main components: sentinels,
bridges, archivists, and diviners. Sentinels are offline IoT geolocation miners
that communicate with each other to create a map of interactions. Bridges relay
information from sentinels to archivists, which store the data. Lastly, diviners
access the data on the archivists to answer queries made by end users. Each
component has their own complexities, and in this paper, we explore exactly
how each component works. We highly recommended for our readers to first
read the XYO White Paper, which gives an overview of Proof of Origin, Bound
Witness, and all other network components. Many of the details of this paper
are built upon the ideas and concepts laid out there.

1 Network Encoding

In this section, we outline the protocol for sharing binary data between compo-
nents in the XYO Network. The principles detailed here are utilized throughout
the protocol.

To start, all binary data follows Big Endian. Also, sizes follow common
semantic where size includes itself:

Bits Name
8 Byte
16 Short
32 Int
64 Long

It is important to have an efficient way of encoding objects in the XYO Net-
work given the limited space and computational power of IoT devices. To solve
this, we utilize a type based encoding system where all object interpretation
knowledge is held outside of the object itself.

1



1.1 Types

Types act as identifiers for certain objects and interpretations for binary data.
A type may infer size, unpacking method, or any other relevant information.
Types follow a major and minor structure for organization where the major is
a group of objects and a minor is the field that describes the object type. All
standard major and minor identification keys can be found in the appendix.

1.2 Structure

Objects are used for packing (and unpacking) data so the payload can be un-
packed only knowing the Type of the payload. Thus, data will be organized in
the following way:

Name Type
Major Type Byte
Minor Type Byte
Value Array <Byte>

A typed based binary system allows for modification without impact on
existing protocols. Each structure defined is permanent (unless deprecated),
meaning that any modification to a type will result in a new major and minor
key pair. This allows for 216 possible types and methods. A typed system has
binary interpretation methods stored on the client-side, and 2 bytes (one for
major and one for minor) referring to the interpretation method to use.

2 Bound Witness

A bound witness allows two parties to trustlessly agree on data using public key
cryptography. With this, a third party can verify that the two parties came to
an agreement after the bound witness is completed.

Bound witness works through a series of three transactions between two
participating parties. Consider two parties: a client and a server. The client
first sends their public key, along with any relevant data to the server. The
server will add their public key, any data they want to share as well, and sign
the public keys some of the data. The server will then send this back to the
client, who will sign the same parts of the data and send it back to the server.
This format is detailed below.

2



Figure 1: An example of a bound witness interaction. Each arrow represents an
exchange of data between client and server, and the boxes represent what each
holds after each exchange as the three transactions happen over time.

2.1 Bound Witness Block

Below is a detailed description of the parts of the data that are passed between
client and server in a bound witness interaction.

Name Type Included in Signature
Total Size Unsigned Integer No
Public Keys Array(0x02)<Keyset> Yes
Payloads Array(0x03)<Payload> Yes and No
Signatures Array(0x02)<Signature Set> No

Note: Array types and other objects can be found in the appendix.

3



2.2 Payload

Note that above, payloads are both signed and not signed. That is because
there are two arrays within the payload: a signed payload, and an unsigned
payload.

Name Type Included in Signature
Total Size Unsigned Integer No
Signed Payload Array(0x06) Yes
Unsigned Payload Array(0x06) No

2.3 Interaction

Below shows a detailed interaction of two parties performing a bound witness
interaction. Each stage shows what data is being sent, and what each party
currently holds during each step (before data is sent). Note: All data transfer
has a header of the bound witness major and minor.

2.3.1 Stage One

To initiate a bound witness the client sends the server the following:

Name Type Description
Total Size Unsigned Integer Size
Public Keys Keyset Client Keys
Payload Payload Client Payload

Client state:

Name Type Description Final
Total Size Unsigned Integer Size No
Public Keys Array(0x02)<Keyset> [Client Keyset] No
Payloads Array(0x03)<Payload> [Client Payload] No
Signatures Array(0x02)<SignatureSet> [] No

Server state:

Name Type Description Final
Total Size Unsigned Integer Size No
Public Keys Array(0x02)<Keyset> [Server Keyset] No
Payloads Array(0x03)<Payload> [Server Payload] No
Signatures Array(0x02)<SignatureSet> [] No

2.3.2 Stage Two

When the server receives the data they will add the client’s payload and public
keys to his bound witness copy, sign it, then sends the client the following:

4



Name Type Description
Total Size Unsigned Integer Size
Public Keys Keyset Server Keys
Payload Payload Server Payload
Signatures SignatureSet Server Signatures

Client state:

Name Type Description Final
Total Size Unsigned Integer Size No
Public Keys Array(0x02)<Keyset> [Client Keyset] No
Payloads Array(0x03)<Payload> [Client Payload] No
Signatures Array(0x02)<SignatureSet> [] No

Server state:

Name Type Description Final
Total Size Unsigned Integer Size No
Public Keys Array(0x02)<Keyset> [Client Keyset, Server Keyset] Yes
Payloads Array(0x03)<Payload> [Client Payload, Server Payload] Yes
Signatures Array(0x02)<SignatureSet> [Server SignatureSet] No

2.3.3 Stage Three

When the client receives the data they will add the server’s payload, signatures,
and public keys to their bound witness copy, sign it, then send the server the
following:

Name Type Description
Total Size Unsigned Integer Size
Signatures Keyset Client Signatures

Client state:

Name Type Description Final
Total Size Unsigned Integer Size Yes
Public Keys Array(0x02)<Keyset> [Client Keyset, Server Keyset] Yes
Payloads Array(0x03)<Payload> [Client Payload, Server Payload] Yes
Signatures Array(0x02)<SignatureSet> [Client SignatureSet, Server SignatureSet] Yes

Server state:

Name Type Description Final
Total Size Unsigned Integer Size No
Public Keys Array(0x02)<Keyset> [Client Keyset, Server Keyset] Yes
Payloads Array(0x03)<Payload> [Client Payload, Server Payload] Yes
Signatures Array(0x02)<SignatureSet> [Server SignatureSet] No

5



2.3.4 Final Product

To complete the bound witness, the server will add the client’s signatures. This
gives us the final product:

Name Type Description Final
Total Size Unsigned Integer Size Yes
Public Keys Array(0x02)<Keyset> [Client Keyset, Server Keyset] Yes
Payloads Array(0x03)<Payload> [Client Payload, Server Payload] Yes
Signatures Array(0x02)<SignatureSet> [Client SignatureSet, Server SignatureSet] Yes

2.4 Higher Order Bound Witness

Due to the XYO Network’s specific utilization of bound witness with only two
participants, and for simplicity’s sake, we have only discussed bound witness
interactions involving two parties in this paper. However, it is possible to have
a bound witness interaction with more than two participants where multiple
participants act as both a client and server.

3 Proof of Origin

All valid bound witness in the XYO Network will be in the form of an origin
block. An origin block is a bound witness that includes all of the origin fields
(described below) in the signed payload. Origin fields allow bound witnesses
to be linked together so that an observer can check the validity of the chain
post-hoc. A collection of origin blocks that can be linked together through the
origin fields is called an Origin Chain.

3.1 Origin Fields

The four origin fields are index, previous hash, next public key, and hash of the
heuristic data (the unsigned payload).

3.1.1 Index

The index is the number of an origin block in an origin chain. Meaning that
the genesis block of an origin chain would have an entry of 0, and the first block
would have an entry of 1, etc. An index is encoded as a 32 bit unsigned integer.

3.1.2 Previous Hash

The previous hash is a hash of the entire previous block in a given component’s
origin chain. Including the previous hash in every origin block turns an origin
chain into a self-maintained blockchain. Unlike other blockchains, the hashing
algorithm used is left up to party creating the origin chain. A more secure
hashing algorithm is more likely to be considered as valid data when used to

6



answer a query by diviners. Details regarding hash encoding can be found in
the appendix.

3.1.3 Next Public Key (Optional)

Due to the insecurity of IoT devices, it is sometimes needed to rotate key pairs.
When keys are about to be rotated, the next public key will be included in this
field in any public key format.

3.2 Origin Chain

Each network component maintains an origin chain. This chain is compromised
of origin blocks. Each time a component in the XYO Network goes through
a bound witness interaction to produce an origin block, they store the signed
information (unsigned is optional) in their origin chain. Because each origin
block contains a the index, next public key used (if rotating keys), and the hash
of the previous block in their chain, these chains can be followed both forward
and backward.

Proof of Origin is the verifiable fact that each block in an origin chain is
valid. If each block is shown to be a valid origin block within an origin chain, it
is known that each of the interactions represented in the origin chain actually
happened. For more information regarding Proof of Origin, please refrence the
XYO White Paper.

3.3 Self Signing

Network components can complete a bound witness interaction with themselves
if they wish to show activity in their chain when there are no other components
to interact with. To do this, they simply include the origin heuristics as normal,
and sign the data themselves.

4 Sentinels

Sentinels act as location witnesses within the XYO Network. Sentinels interact
with each other via Bluetooth connection (with other means of connection in the
future) to complete a bound witness interaction where they exchange heuristic
data. Over time, their origin chains maintain a history of all other sentinels and
bridges they have interacted with.

4.1 Sentinel to Sentinel Interaction

When two sentinels interact, one acts as the client and one acts as the server.
They perform a standard bound witness interaction, including origin informa-
tion (index, next public key, previous hash, hash of heuristics) in their signed
payload, and heuristic data in their unsigned payload. Sentinels are strongly
incentivized to keep the unsigned payloads in their origin blocks until they have

7



been sufficiently offloaded to one or more bridges. Data offloaded without the
unsigned payload (the heuristic data) will not be valuable in most cases, and it
will be unlikely that they will be rewarded for offloading this data.

5 Bridges

Bridges collect data from sentinels and relay it to archivists. They have bound
witness interactions with both the sentinels whom they receive data from, and
the archivists who they relay data to. Bridges thus maintain an origin chain
containing both sentinel-bridge and bridge-archivist interactions. These are
described in the following sections.

5.1 Sentinel to Bridge Interaction

Bridges are constantly trying to make connections to sentinels. This connection
is specific to the transport protocol. As such, they are the client in the bound
witness interaction and the sentinel is the server. Once a bridge connects with a
sentinel, they begin a bound witness interaction with the bridge sending a first
packet of data with any optional heuristics in the unsigned payload, and any
origin heuristics in the signed payload. The sentinel then adds their origin chain
offload to the unsigned payload and their origin heuristics to the signed payload.
The rest of the bound witness interaction continues as previously described. The
steps are further detailed below.

1. The bridge initiates a bound witness interaction with a sentinel including
their origin heuristics in the signed payload.

2. The sentinel adds their origin blocks they wish to offload into the unsigned
payload, and origin blocks in the signed payload. This is detailed below:

Name Type Description
Total Size Unsigned Integer Total Size of Payloads
Signed Payload Array(0x06) Origin Heuristics
Unsigned Payload Array(0x06) Origin Blocks to offload

3. The bridge extracts the data from the unsigned payload of the origin block,
and both the sentinel and bridge keep signed proof of the interaction in
their origin chain.

5.2 Relaying Data to Archivists

As bridges extract data from sentinels’ origin blocks as described in the previous
section, they store it temporarily to transmit it to archivists. They connect to
archivists through a bootstrapping node. Once they have offloaded the data to
one or multiple archivists, they can delete the data. However, they must still
keep the origin block from the transaction with the sentinel in their origin chain.

8



When bridges send data to an archivist, they have a bound witness inter-
action as well. Once the bridge sends the data to an archivist, the archivist
initiates the bound witness interaction, thus making the archivist the client.
The steps are described as follows:

1. The archivist receives the connections request. If they accept, the archivist
receives data from the bridge.

2. The archivist extracts the payload hash of each piece of data they received
and puts these in the unsigned payload in a bound witness interaction with
the server archivist. This is specified below.

Name Type Description
Total Size Unsigned Integer Total Size of Payloads
Signed Payload Array(0x06) Origin Heuristics
Unsigned Payload Array(0x06) Hashes Within Origin Blocks

3. The bridge receives this bound witness interaction request, and the two
complete the interaction.

4. Both the bridge and archivist store the block in their origin chain. How-
ever, the archivist must keep the unsigned hashes of the data in his origin
chain (i.e. they must leave the unsigned payload) so that each piece of
data can be traced back to the bridge.

6 Archivist

It is the archivists’ job to store, share, and validate data that is collected by
sentinels. They are rewarded for completing these tasks well and are punished
for failing to do so. In order to maintain efficiency in our network, their goals
are to ensure that all data on the archivist network is valid and spread all data
as widely as possible. The more archivists that hold a given piece of data, the
more quickly and more likely it will be found by a diviner to answer a query.

6.1 Sharing Data

All archivists’ data is publicly available. However, in order to take data, an
archivist must complete a bound witness interaction with the archivist they are
taking data from. An archivist that is taking data is the client in this interaction,
and the archivist providing the data is the server. When an archivist takes
data from another archivist, they initiate a standard bound witness interaction
including the payload hash of each piece of data they took in the unsigned
payload of this interaction. The specific steps are detailed below.

1. The client archivist takes any data they want from the server archivist.

9



2. The client archivist extracts the payload hash of each piece of data they
took, and puts this in the unsigned payload in a bound witness interaction
with the server archivist. This is specified below.

Name Type Description
Total Size Unsigned Integer Total Size of Payloads
Signed Payload Array(0x06) Origin Heuristics
Unsigned Payload Array(0x06) Hashes Within Origin Blocks

3. The server receives this bound witness interaction request, and the two
complete the interaction.

4. Both the client and server archivists store the block in their origin chain.
However, the client archivist must keep the unsigned hashes of the data in
his origin chain (i.e. they must leave the unsigned payload) so that each
piece of data can be traced back to the server archivist.

Notice that the client archivist must keep the unsigned payload in his origin
block. This is because when an individual piece of data is used by a diviner, the
archivist must be able to prove where they got the data from. If the archivist
does not keep the unsigned payload, all they have in their signed payload is a
hash of all of the data they took. With only this hash, it is impossible to verify
where an archivist got a specific piece of data unless they provide all of the data
they took.

The server archivist, however, does not need to keep the unsigned payload.
This is because his hash in the signed payload can be verified by the maintained
unsigned payload in the client archivist’s origin chain.

This could also be solved by simply putting the hashes of each piece of data
in the signed payload. However, this is data that is unnecessary for the server
archivist to store, and thus inefficient.

7 Diviner

It is the diviner’s job to answer queries proposed on the network by finding
relevant data stored in archivists. Many diviners can work together to answer a
given query. In this case, as the diviners locate relevant data in archivists, they
share it among each other, and come to consensus on what the best answer is.

7.1 Archivist to Diviner Interactions

A diviner can search through archivists to take any data they want that is
relevant to answering a given query. However, in order for their data to be
proven as valid for the given query, they must prove where they got the data
from through a bound witness interaction with the archivist they took the data
from. This bound witness interaction is exactly the same as the bound witness
interaction between two archivists, where the diviner in this case is the client.

10



Appendix

Arrays (0x01)

Single Element Array

A weak array is used when there is an array with different types (e.g. heuristics).
Byte Size Array Header (0x01)

Name Type Description
Total Size Unsigned Byte Size of Entire Array
Type Major Byte Type Major of the element
Type Minor Byte Type Minor of the element

Short Size Array Header (0x02)

Name Type Description
Total Size Unsigned Short Size of Entire Array
Type Major Byte Type Major of the element
Type Minor Byte Type Minor of the element

Int Size Array Header (0x03)

Name Type Description
Total Size Unsigned Int Size of Entire Array
Type Major Byte Type Major of the element
Type Minor Byte Type Minor of the element

Array Element

Name Type Description
Element Indicated in Header An element in the array

Multi Element Array

A Multi Element Array is used when there is an array with the same type (e.g.
an origin chain). Byte Size Array Header (0x04)

Name Type Description
Total Size Unsigned Byte Size of Entire Array

Short Size Array Header (0x05)

Name Type Description
Total Size Unsigned Short Size of Entire Array

Int Size Array Header (0x06)

Name Type Description
Total Size Unsigned Int Size of Entire Array

11



Array Element

Name Type Description
Type Major Byte Type Major of the element
Type Minor Byte Type Minor of the element
Element Indicated Above An element in the array

Core Objects (0x02)

Bound Witness (0x01)

A bound witness in the XYO Network.

Name Type Description
Total Size Unsigned Int Size of Entire Bound Witness
Public Keys Array(0x02)<KeySet> A keyset for every party in the bound witness.
Payloads Array(0x03)<Payload> A payload for every party in the bound witness.
Signatures Array(0x02)<SignatureSet> A SignatureSet for every party in the bound witness.

KeySet (0x02)

A set of public keys for a single party.

Name Type Description
Keys Array(0x05) A multi-typed array of public keys.

SignatureSet (0x03)

A set of signatures for a single party.

Name Type Description
Signatures Array(0x05) A untyped array of signatures.

Payload (0x04)

A payload contains a set of unsigned and signed Heuristics.

Name Type Description
Total Size Unsigned Int Total size of Payload
Signed Heuristics Array(0x06) An multi-typed array of heuristics
Unsigned Heuristics Array(0x06) An multi-typed array of heuristics

Index (0x05)

The index in an origin block.

Name Type Description
Index Unsigned integer the index in the origin chain

12



Previous Hash (0x06)

The previous hash in an origin chain.

Name Type Description
Hash Type Major Byte Hash Type
Hash Type Minor Byte Hash Type
Hash Inferred above the previous hash

Next Public Key (0x07)

The next public key to use in an origin chain.

Name Type Description
Public Key Type Major Byte Public Key Type
Public Key Type Minor Byte Public Key Type
Next Public Key Inferred above The next public key in an origin chain.

Hashes (0x03)

MD2 (0x01)

Calibration: MD2(0x010203)=0x30BD026F5B88B4719B563BDDB68917BE

Name Size Description
Hash 16 Bytes MD2 Hash

MD5 (0x02)

Calibration: MD5(0x010203)=0x5289DF737DF57326FCDD22597AFB1FAC

Name Size Description
Hash 16 Bytes MD5 Hash

SHA1 (0x03)

Calibration: SHA1(0x010203)=0x7037807198C22A7D2B0807371D763779A8
4FDFCF

Name Size Description
Hash 20 Bytes SHA1 Hash

SHA224 (0x04)

Calibration: SHA224(0x010203)=0x3917AAAAA61D81DEB93EF1C27EC64
7F126FB932894B7CAA9DF286193

Name Size Description
Hash 28 Bytes SHA224 Hash

13



SHA256 (0x05)

Calibration: SHA256(0x010203)=0x039058C6F2C0CB492C533B0A4D14EF7
7CC0F78ABCCCED5287D84A1A2011CFB81

Name Size Description
Hash 32 Bytes SHA256 Hash

SHA512 (0x06)

Calibration: SHA512(0x010203)=0x27864CC5219A951A7A6E52B8C8DDDF
6981D098DA1658D96258C870B2C88DFBCB51841AEA172A28BAFA6A79731
165584677066045C959ED0F9929688D04DEFC29

Name Size Description
Hash 64 Bytes SHA224 Hash

Public Keys (0x04)

ECDSA secp256k1 Uncompressed (0x01)

Name Size Description
Curve Point X 32 Bytes Curve Point X on secp256k1
Curve Point Y 32 Bytes Curve Point Y on secp256k1

ECDSA secp256k1 Compressed (0x02)

Point Y is 0x03 if Y is odd, and 0x02 if even.

Name Size Description
Curve Point X 1 Byte Curve Point Y on secp256k1
Curve Point Y 32 Bytes Curve Point X on secp256k1

Signatures 0x05

ECDSA secp256k1 (0x01)

Name Type Description
Total Size Unsigned Byte Total size of signature.
Signature Array<Byte> ECDSA Signature with the secp256k1 curve.

For the most up to date objects, please visit: https://github.com/
XYOracleNetwork/spec-coreobjectmodel-tex.

14

https://github.com/XYOracleNetwork/spec-coreobjectmodel-tex
https://github.com/XYOracleNetwork/spec-coreobjectmodel-tex

	Network Encoding
	Types
	Structure

	Bound Witness
	Bound Witness Block
	Payload
	Interaction
	Stage One
	Stage Two
	Stage Three
	Final Product

	Higher Order Bound Witness

	Proof of Origin
	Origin Fields
	Index
	Previous Hash
	Next Public Key (Optional)

	Origin Chain
	Self Signing

	Sentinels
	Sentinel to Sentinel Interaction

	Bridges
	Sentinel to Bridge Interaction
	Relaying Data to Archivists

	Archivist
	Sharing Data

	Diviner
	Archivist to Diviner Interactions


